South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 3 (2020), pp. 51-60

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ESSENTIAL ASCENT AND ESSENTIAL DESCENT OF WEIGHTED COMPOSITION OPERATORS ON *l^p* SPACES

Harish Chandra and Pradeep Kumar*

Department of Mathematics, Banaras Hindu University, Varanasi - 221005, INDIA

E-mail : harish_pathak2004@yahoo.com

*Directorate of Census Operations, Uttarakhand, L. D. Tower-3, Saharanpur Road, Near Mata Wala Bagh, Dehradun - 248001, INDIA

E-mail : pradeep28_bhu@yahoo.co.in

(Received: Jun. 05, 2020 Accepted: Sep. 05, 2020 Published: Dec. 30, 2020)

Abstract: In this paper we give a complete characterization of essential ascent and essential descent of weighted composition operators on l^p spaces.

Keywords and Phrases: Essential Ascent, Essential Descent, Weighted Composition Operator.

2010 Mathematics Subject Classification: Primary: 47B33.

1. Introduction

Let X denote an arbitrary vector space and T be a linear operator on X. Let D(T), N(T) and R(T) denote domain, kernel and range of T respectively. Let \mathbb{N} denote the set of natural numbers. Let l^p , $(1 \leq p < \infty)$ be the Banach space of all p-summable sequences of complex numbers under the standard p-norm on it and let u be a complex-valued function with domain \mathbb{N} . For $f \in l^p$ define

 $(uC_{\phi})(f)(n) = u(n)f(\phi(n)), \text{ for each } n \in \mathbb{N}.$

If $(uC_{\phi})(f) \in l^p$ whenever $f \in l^p$ then uC_{ϕ} is a linear transformation on l^p and is called a weighted composition operator on l^p . When u is identically equal to one